
Revive the Naira
Smart Contract Audit

// Website: https://www.revivethenaira.com/
// Telegram: https://t.me/revivethenaira

// Youtube: https://www.youtube.com/@revivethenaira
// X(Twitter): https://twitter.com/revivethe_naira

Terrance Nibbles - Certified Auditor

March 21, 2024

https://www.revivethenaira.com/
https://t.me/revivethenaira
https://www.youtube.com/@revivethenaira
https://twitter.com/revivethe_naira

Revive the Naira
Smart Contract Audit

Preface
This audit is of the Revive the Naira token contract that was provided for
detailed analysis on March 20, 2024. The entire solidity smart contract code is
listed at the end of the report. This was manually audited as well as reviewed
with other tools.

This token contract that was audited is on the Binance Smart Chain (BSC)
Blockchain:

https://bscscan.com/address/
0xddf04c421f68694c0f7c5a0c5de89c9e0037160d#code

https://bscscan.com/address/0xddf04c421f68694c0f7c5a0c5de89c9e0037160d#code
https://bscscan.com/address/0xddf04c421f68694c0f7c5a0c5de89c9e0037160d#code

DISCLAIMER:

This audit report is based on a professional review of the provided smart contract provided. It is
important to note that this assessment represents our expert opinion and analysis of the code at the
time of the evaluation. The findings and recommendations presented herein are not intended to
serve as warranties, guarantees, or assurances of the contract's performance, security, or
functionality on any live network, including the Ethereum or Binance Smart Chain mainnet.

We expressly disclaim any responsibility for errors, omissions, or inaccuracies in this report, as the
assessment is conducted on a non-exhaustive basis and may not cover all possible scenarios or
future developments. The audit is conducted in accordance with industry best practices and
standards at the time of evaluation.

Furthermore, we are unable to confirm the deployment of this specific contract on the Ethereum /
Binance Smart Chain mainnet. This report is solely based on the provided code and does not verify
the actual deployment status on any live blockchain. It is the responsibility of the contract deployer
to ensure the accurate deployment of the contract and adhere to security best practices when
deploying to production environments.

Users, developers, and stakeholders are advised to perform additional due diligence and testing
before deploying or interacting with the contract on any live network. This report should be
considered as a tool for risk assessment rather than a guarantee of the contract's security or
performance. In the dynamic and rapidly evolving field of blockchain technology, risks and
vulnerabilities may emerge over time, and it is crucial to stay vigilant and up-to-date on security
best practices.

By relying on this audit report, the reader acknowledges and accepts that the audit is based on the
provided information and that no warranties, guarantees, or assurances are expressed or implied.

Audit Report: Revive the Naira Smart Contract

The provided smart contract represents a BEP20 token named
"Revive The Naira" (RTN) with various functionalities, including
taxation, burn mechanism, maximum hold amount restriction, and
automated market maker (AMM) interactions. This analysis will
outline the contract's features, potential vulnerabilities, and areas
for improvement.

Overview
• Tokenomics: The token has a total supply of 10 billion

(10^10) with 9 decimals. It implements a buy and sell tax of
2%, intending to distribute half of the tax to a burn wallet and
the other half to a marketing wallet.

• AMM Interactions: The contract interacts with an AMM router
(PancakeSwap) to facilitate token swaps and liquidity
provision.

• Ownership Controls: Includes functions for ownership
transfer, tax configuration, and trading enablement, guarded
by the onlyOwner modifier.

• Max Holding: Enforces a maximum holding amount per
wallet, set to 3% of the total supply initially.

Key Points
• Taxation Logic: Taxes are applied differently based on

the transaction type (buy/sell/transfer) and the participating
addresses. Tax is not applied when transferring between
whitelisted addresses or from the contract itself.

• Launch Mechanism: The contract includes a launch
boolean and a launchBlock to manage the commencement of
trading. Taxation logic heavily depends on these, especially
for sell transactions immediately after launch.

• Burn and Marketing Contribution: Taxes collected from
transactions are split between a burn address and the
contract itself for marketing expenses. Funds collected for
marketing are swapped for BNB and sent to the marketing
wallet.

Potential Concerns and Recommendations
• Centralization and Trust: The contract's reliance on owner-

only functions for significant parameters like taxes,
marketing wallet, and max hold amount introduces
centralization. Consider implementing a time-lock or multi-
signature wallet for critical functions to enhance trust.

• Trading Enablement: The contract can be enabled for trading
explicitly by the owner. Ensure transparent communication
with the community regarding the timing and conditions for
enabling trading to prevent unfair advantages.

• Sell Tax Logic Post-Launch: The sell tax jumps to 99% for
transactions within a blockDelay after launch, intended as an
anti-bot measure. This approach might be too aggressive
and potentially harmful to uninformed early participants.
Consider a more nuanced approach or clear documentation
to mitigate unintended consequences.

• Max Holding Restriction: While the max hold amount is
designed to prevent whale domination, it may inadvertently
restrict liquidity provision in the AMM pair, especially for
significant transactions. Review and adjust this limit
considering the liquidity needs.

• Swap Mechanism for Marketing Funds: Swapping tokens for
BNB for marketing expenses occurs automatically when the
contract balance exceeds a threshold. The swapping
operation's gas cost is borne by the transaction initiator,
potentially leading to higher transaction costs. Consider
implementing a mechanism to reimburse these costs or
trigger swaps in a more controlled manner.

• TO BE RESOLVED as per Client - Lack of Renounce
Ownership: The contract lacks a function to renounce
ownership, which is a common practice for decentralized
projects to demonstrate commitment to decentralization.

• Missing Deflationary Mechanisms: Other than the burn wallet
receiving half of the transaction tax, there are no additional
mechanisms to reduce supply over time. Depending on the
project's goals, additional deflationary features could be
considered.

Security Considerations
• Reentrancy: The contract does not seem vulnerable to

reentrancy attacks, as it does not make external calls in a
context that could lead to unexpected behavior. However,
always ensure to use reentrancy guards when performing
external calls.

• Integer Overflow/Underflow: Given the contract is compiled
with Solidity ^0.8.0, it is safe from overflow/underflow issues
due to built-in checks.

• Permissioned Functions and Access Control: The contract
employs the onlyOwner modifier for critical functions, which is
a good practice. Ensure that ownership is held by a secure
address and consider using more granular access control for
different operational aspects.

Conclusion
The "Revive The Naira" token contract introduces several
features aimed at creating a sustainable ecosystem through
taxation and marketing contributions. While it incorporates several
anti-abusive measures to ensure fair trading, it's essential to
balance these mechanisms carefully to avoid adverse impacts on
genuine participants. Transparency with the community,
especially regarding the launch and operational changes, is
crucial for trust. Additionally, consider implementing more
decentralized governance structures as the project evolves.

NO HIGH RISK ISSUES IDENTIFIED

MEDIUM / LOW RISK ISSUES IDENTIFIED

M001 - The owner is a single point of
failure and a centralization risk:
Having a single EOA as the only owner of contracts is a large
centralization risk and a single point of failure. A single private key
may be taken in a hack, or the sole holder of the key may become
unable to retrieve the key when necessary. Consider changing to
a multi-signature setup, or having a role-based authorization
model.

42 function transferOwnership(address newOwner) public onlyOwner {

55 function renounceOwnership() public virtual onlyOwner {

144 function enableTrading() external onlyOwner {

152) external onlyOwner {

158 function newBlockDelay(uint256 number) external onlyOwner {

165) external onlyOwner {

171 function setMarketingWallet(address _marketWallet) external
onlyOwner {

242 function setMaxHoldAmount(uint256 _maxHoldAmount) external
onlyOwner {

248 function updateWhiteList(address _holder, bool _value) external
onlyOwner {

M002 - No way to retrieve ETH from the
contract:
The following contracts contain at least one payable function, yet
the function does not utilize forwarded ETH, and the contract is
missing functionality to withdraw ETH from the contract. This
means that funds may become trapped in the contract indefinitely.
Consider adding a withdraw/sweep function to contracts that are
capable of receiving ether.

22 contract RTN is IBEP20, Ownable {

Impact
Without a withdrawal function, any ETH sent to this contract is
irrecoverable. This can happen not just through direct sends but
also as a result of operations with other contracts (e.g., the swap
operation returning ETH to this contract instead of the intended
wallet). Over time, this could potentially lead to significant value
being locked without any recourse for recovery.

Recommendation
Implement a secure withdrawal function that allows the contract
owner (or another designated party) to transfer out ETH or native
tokens held by the contract. This function should include security
checks to prevent unauthorized access.

Here is a basic example of how such a function could be
implemented:

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.7;

contract Withdrawable is Ownable {

 // Allows only the owner to withdraw Ether from this contract.

 function withdraw() external onlyOwner {

 uint256 balance = address(this).balance;

 require(balance > 0, "No funds to withdraw");

 // Transfer the entire balance to the owner.

 (bool success,) = owner().call{value: balance}("");

 require(success, "Failed to withdraw funds");

 }

}

Integrating into the RTN Contract:

• Ensure your contract inherits Ownable or has an
equivalent access control mechanism to restrict the withdraw
function to authorized users only.

• Implement the withdraw function similar to the example
provided.

• Test this functionality extensively, especially in edge
cases, to ensure that funds can be safely withdrawn under
all circumstances.

Additional Notes
• Always be cautious with functions that transfer funds to

prevent security vulnerabilities. The require(success, "...")
check after attempting a transfer is crucial to ensure that the
operation succeeded.

• Consider implementing emergency mechanisms or
additional access controls if the funds' security and
management involve more complex requirements or multiple
parties.

L001 - Missing checks for address(0x0)
when assigning values to address state
variables:
This issue arises when an address state variable is assigned a
value without a preceding check to ensure it isn't address(0x0).
This can lead to unexpected behavior as address(0x0) often
represents an uninitialized address.

172 marketWallet = _marketWallet;

L002 - Use Ownable2Step rather than
Ownable:
Ownable2Step and Ownable2StepUpgradeable prevent the contract
ownership from mistakenly being transferred to an address that
cannot handle it (e.g. due to a typo in the address), by requiring
that the recipient of the owner permissions actively accept via a
contract call of its own.

22 contract RTN is IBEP20, Ownable {

L003 - Setters should have initial value
check:
Setters should have initial value check to prevent assigning wrong
value to the variable. Assignment of wrong value can lead to
unexpected behavior of the contract.

171 function setMarketingWallet(address _marketWallet) external
onlyOwner {
172 marketWallet = _marketWallet;
173 }

242 function setMaxHoldAmount(uint256 _maxHoldAmount) external
onlyOwner {
243 maxHoldAmount = _maxHoldAmount;
244
245 emit SetMaxHoldAmount(_maxHoldAmount);
246 }

L004 - Empty receive()/payable fallback()
function does not authorize requests:
If the intention is for the Ether to be used, the function should call
another function, otherwise it should revert (e.g. require(msg.sender
== address(weth))). Having no access control on the function means
that someone may send Ether to the contract, and have no way to
get anything back out, which is a loss of funds. If the concern is
having to spend a small amount of gas to check the sender
against an immutable address, the code should at least have a
function to rescue unused Ether.

240 receive() external payable {}

L005 - Contracts are designed to receive
ETH but do not implement function for
withdrawal:
The following contracts can receive ETH but can not withdraw,
ETH is occasionally sent by users will be stuck in those contracts.
This functionality also applies to baseTokens resulting in locked
tokens and loss of funds.

240 receive() external payable {}

L006 - No limits when setting state
variable amounts:
It is important to ensure state variables numbers are set to a
reasonable value.

159 blockDelay = number;

213 _tax = buyTax;

219 _tax = sellTax;

243 maxHoldAmount = _maxHoldAmount;

L007 - For loops in public or external
functions should be avoided due to high
gas costs and possible DOS:
In Solidity, for loops can potentially cause Denial of Service (DoS)
attacks if not handled carefully. DoS attacks can occur when an
attacker intentionally exploits the gas cost of a function, causing it
to run out of gas or making it too expensive for other users to call.
Below are some scenarios where for loops can lead to DoS
attacks: Nested for loops can become exceptionally gas
expensive and should be used sparingly.

149 function configureExempted(
150 address[] memory _wallets,
151 bool _enable
152) external onlyOwner {
153 for (uint256 i = 0; i < _wallets.length; i++) {
154 _isExcludedFromFeeWallet[_wallets[i]] = _enable;
155 }
156 }

L008 - Consider implementing two-step
procedure for updating protocol
addresses:
Lack of two-step procedure for critical operations leaves them
error-prone. Consider adding two step procedure on the critical
functions. See similar findings in previous Code4rena contests for
reference: https://code4rena.com/reports/2022-06-illuminate/#2-
critical-changes-should-use-two-step-procedure

171 function setMarketingWallet(address _marketWallet) external
onlyOwner {

https://code4rena.com/reports/2022-06-illuminate/#2-critical-changes-should-use-two-step-procedure
https://code4rena.com/reports/2022-06-illuminate/#2-critical-changes-should-use-two-step-procedure
https://code4rena.com/reports/2022-06-illuminate/#2-critical-changes-should-use-two-step-procedure

L009 - Governance functions should be
controlled by time locks:
Governance functions (such as upgrading contracts, setting
critical parameters) should be controlled using time locks to
introduce a delay between a proposal and its execution. This
gives users time to exit before a potentially dangerous or
malicious operation is applied.

55 function renounceOwnership() public virtual onlyOwner {

42 function transferOwnership(address newOwner) public onlyOwner {

158 function newBlockDelay(uint256 number) external onlyOwner {

149 function configureExempted(
150 address[] memory _wallets,
151 bool _enable
152) external onlyOwner {

162 function changeTax(
163 uint256 newBuyTax,
164 uint256 newSellTax
165) external onlyOwner {

248 function updateWhiteList(address _holder, bool _value) external
onlyOwner {

242 function setMaxHoldAmount(uint256 _maxHoldAmount) external
onlyOwner {

144 function enableTrading() external onlyOwner {

171 function setMarketingWallet(address _marketWallet) external
onlyOwner {

L010 - Missing checks for address(0x0)
when updating address state variables:
Missing checks for address(0x0) when updating address state
variables

29 _owner = msgSender;

57 _owner = address(0);

L011 - Unbounded state array which is
iterated upon:
Iterating over an unbounded state array in Solidity can result in
excessive gas consumption, especially if the array size exceeds
the block gas limit. This issue commonly arises in tasks like token
distribution. To address this, it is recommended to limit array sizes
for iteration, consider alternative data structures like linked lists,
adopt paginated processing for smaller batches over multiple
transactions, or use a 'state array' with a separate index-tracking
array to manage large datasets and avoid gas-related problems.

154 _isExcludedFromFeeWallet[_wallets[i]] = _enable;

// SPDX-License-Identifier: MIT

pragma solidity 0.8.7;

import "./IBEP20.sol";
import "./Ownable.sol";
import "./IFactory.sol";
import "./IRouter02.sol";

contract RTN is IBEP20, Ownable {
 mapping(address => uint256) private _balance;
 mapping(address => mapping(address => uint256)) private _allowances;
 mapping(address => bool) private _isExcludedFromFeeWallet;
 uint256 private constant MAX = ~uint256(0);
 uint8 private constant _decimals = 9;
 uint256 private constant _totalSupply = 10 ** 10 * 10 ** _decimals; // 10Billion tokens
 uint256 public buyTax = 2; // 2% buy tax
 uint256 public sellTax = 2; // 2% sell tax
 // 1% will go to burn wallet, other 1% will go to marketing wallet
 address public burnWallet = 0x000000000000000000000000000000000000dEaD; // Burn
Wallet
 address public marketWallet = 0x5F417D6A6b4bE90b7E38B72e2b090EC1A0CAA805; //
Market Wallet
 uint256 public maxHoldAmount = (_totalSupply * 3) / 100; // 3% of _totalSupply

 uint256 public threshold = _totalSupply / 1000; // 0.1% of _totalSupply

 uint256 private _tax;

 string private constant _name = "Revive The Naira";
 string private constant _symbol = "RTN";

 IRouter02 private router;
 address public pair;

 mapping(address => bool) public _isWhiteList;

 uint256 private launchBlock;
 uint256 private blockDelay = 50; // 150 seconds

 bool private launch = false;

 // Events
 event UpdateWhiteList(address indexed holder, bool value);
 event SetMaxHoldAmount(uint256 indexed maxHoldAmount);

 constructor() {
 router = IRouter02(0x10ED43C718714eb63d5aA57B78B54704E256024E); // bsc
mainnet
 pair = IFactory(router.factory()).createPair(
 address(this),
 router.WETH()
);

 _balance[msg.sender] = _totalSupply;

 _isExcludedFromFeeWallet[msg.sender] = true;
 _isExcludedFromFeeWallet[marketWallet] = true;
 _isExcludedFromFeeWallet[burnWallet] = true;
 _isExcludedFromFeeWallet[address(this)] = true;

 _isWhiteList[msg.sender] = true; // owner
 _isWhiteList[address(this)] = true; // token contract
 _isWhiteList[pair] = true; // pair

 _allowances[address(this)][address(router)] = MAX;

 emit Transfer(address(0), _msgSender(), _totalSupply);
 }

 function name() public pure returns (string memory) {
 return _name;
 }

 function symbol() public pure returns (string memory) {
 return _symbol;
 }

 function decimals() public pure returns (uint8) {
 return _decimals;
 }

 function totalSupply() public pure override returns (uint256) {
 return _totalSupply;
 }

 function balanceOf(address account) public view override returns (uint256) {
 return _balance[account];
 }

 function transfer(
 address recipient,
 uint256 amount
) public override returns (bool) {
 _transfer(_msgSender(), recipient, amount);
 return true;
 }

 function allowance(
 address owner,
 address spender
) public view override returns (uint256) {
 return _allowances[owner][spender];
 }

 function approve(
 address spender,
 uint256 amount
) public override returns (bool) {
 _approve(_msgSender(), spender, amount);
 return true;
 }

 function transferFrom(
 address sender,
 address recipient,

 uint256 amount

) public override returns (bool) {
 _transfer(sender, recipient, amount);
 _approve(
 sender,
 _msgSender(),
 _allowances[sender][_msgSender()] - amount
);
 return true;
 }

 function _approve(address owner, address spender, uint256 amount) private {
 require(owner != address(0), "BEP20: approve from the zero address");
 require(spender != address(0), "BEP20: approve to the zero address");
 _allowances[owner][spender] = amount;
 emit Approval(owner, spender, amount);
 }

 function enableTrading() external onlyOwner {
 launch = true;
 launchBlock = block.number;
 }

 function configureExempted(
 address[] memory _wallets,
 bool _enable
) external onlyOwner {
 for (uint256 i = 0; i < _wallets.length; i++) {
 _isExcludedFromFeeWallet[_wallets[i]] = _enable;
 }
 }

 function newBlockDelay(uint256 number) external onlyOwner {
 blockDelay = number;
 }

 function changeTax(
 uint256 newBuyTax,
 uint256 newSellTax

) external onlyOwner {
 require(newBuyTax < 100 && newSellTax < 100, "BEP20: wrong tax value!");
 buyTax = newBuyTax;
 sellTax = newSellTax;
 }

 function setMarketingWallet(address _marketWallet) external onlyOwner {
 marketWallet = _marketWallet;
 }

 function _tokenTransfer(address from, address to, uint256 amount) private {
 uint256 taxTokens = (amount * _tax) / 100;
 uint256 transferAmount = amount - taxTokens;

 _balance[from] = _balance[from] - amount;
 _balance[to] = _balance[to] + transferAmount;
 emit Transfer(from, to, transferAmount);

 uint256 burnAmount = taxTokens / 2;
 uint256 marketAmount = taxTokens - burnAmount;

 if (burnAmount > 0) {
 _balance[burnWallet] = _balance[burnWallet] + burnAmount; // half to burn wallet
 emit Transfer(from, burnWallet, burnAmount);
 }

 if (marketAmount > 0) {
 _balance[address(this)] = _balance[address(this)] + marketAmount; // half to market
wallet
 emit Transfer(from, address(this), marketAmount);
 }

 // maxHoldAmount check
 if (!_isWhiteList[to]) {
 require(_balance[to] <= maxHoldAmount, "Over Max Holding Amount");
 }
 }

 function _transfer(address from, address to, uint256 amount) private {
 require(from != address(0), "BEP20: transfer from the zero address");

 if (_isExcludedFromFeeWallet[from] || _isExcludedFromFeeWallet[to]) {
 _tax = 0;
 } else {
 require(launch, "Wait till launch");
 if (block.number < launchBlock + blockDelay) {
 _tax = 99;
 } else {
 if (from == pair) {
 _tax = buyTax;
 } else if (to == pair) {
 uint256 tokensToSwap = balanceOf(address(this));
 if (tokensToSwap > threshold) {
 swapTokensForEth(threshold);
 }
 _tax = sellTax;
 } else {
 _tax = 0;
 }
 }
 }
 _tokenTransfer(from, to, amount);
 }

 function swapTokensForEth(uint256 tokenAmount) private {
 address[] memory path = new address[](2);
 path[0] = address(this);
 path[1] = router.WETH();
 router.swapExactTokensForETHSupportingFeeOnTransferTokens(
 tokenAmount,
 0,
 path,
 marketWallet,
 block.timestamp
);

 }

 receive() external payable {}

 function setMaxHoldAmount(uint256 _maxHoldAmount) external onlyOwner {
 maxHoldAmount = _maxHoldAmount;

 emit SetMaxHoldAmount(_maxHoldAmount);
 }

 function updateWhiteList(address _holder, bool _value) external onlyOwner {
 _isWhiteList[_holder] = _value;

 emit UpdateWhiteList(_holder, _value);
 }
}

Terrence Nibbles, CCE, CCA Auditor #17865

	Preface

